UV, visible and near-infrared lights induced NOx destruction activity of (Yb,Er)-NaYF4/C-TiO2 composite

نویسندگان

  • Xiaoyong Wu
  • Shu Yin
  • Qiang Dong
  • Bin Liu
  • Yuhua Wang
  • Tohru Sekino
  • Soo Wohn Lee
  • Tsugio Sato
چکیده

Titanium dioxide (TiO2) is a well-known photocatalyst for environmental cleaning and energy conversion. However, it can only be excited by ultraviolet light for photocatalysis due to its wide band gap (3.2 eV). In this paper, we present a novel (Yb,Er)-NaYF4/C-TiO2 composite which can be perfectly induced not only by ultraviolet light but also weak visible and near infrared lights, owing to the increased carbon doping contents and optimal energy transfer between up-conversion phosphor and C doped TiO2 compared with that of solely C-TiO2. Consequently, the (Yb,Er)-NaYF4/C-TiO2 composite can present the outstanding continuous NOx gas destruction ability under the irradiation of ultraviolet, weak visible and infrared lights much superior to pure C-TiO2, P25 titania and even that of (Yb,Er)-NaYF4/N-TiO2 composite, due to the nice synergetic effect of (Yb,Er)-NaYF4 and C-TiO2, indicating a promising potential in the photocatalyst application with high efficiency of ultraviolet, visible and infrared lights induced photocatalysis simultaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.

This work focuses on the design of composite photoanodes with dual-mode luminescent function as well as the effects of luminescent phosphors on the photoelectric properties of dye-sensitized solar cells. Specifically, hexagonal phase NaYF4:Yb(3+)/Er(3+) microcrystals were prepared by a hydrothermal method and added to the TiO2 photoanodes of dye-sensitized solar cells. The results indicated tha...

متن کامل

Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells.

Extending the spectral absorption of organolead halide perovskite solar cells from visible into near-infrared (NIR) range renders the minimization of non-absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4 :Yb/Er upconversion nanoparticles (UCNPs) as the mesopor...

متن کامل

Cost-Effective and Highly Photoresponsive Nanophosphor-P3HT Photoconductive Nanocomposite for Near-Infrared Detection

The advent of flexible optoelectronic devices has accelerated the development of semiconducting polymeric materials. We seek to replace conventional expensive semiconducting photodetector materials with our cost-effective composite system. We demonstrate in this work the successful fabrication of a photoconductive composite film of poly(3-hexylthiophene-2,5-diyl) (P3HT) mixed with NaYF4:Yb,Er n...

متن کامل

Facet engineered interface design of NaYF4:Yb,Tm upconversion nanocrystals on BiOCl nanoplates for enhanced near-infrared photocatalysis.

The combination of upconversion nanocrystals with a wide-bandgap semiconductor is an efficient strategy to develop near-infrared (NIR)-responsive photocatalysts. The photocatalytic activity of the hybrid structures is greatly determined by the efficiency of the energy transfer on the interface between upconversion nanocrystals and the semiconductor. In this work, we demonstrate the interface de...

متن کامل

Near infrared photolysis of a Ru polypyridyl complex by upconverting nanoparticles.

NaYF4:Yb(3+)/Er(3+)nanocrystals upconvert near infrared light (980 nm) into higher energy visible photons capable of effecting the photodissociation of the monodentate pyridyl ligand in cis-[Ru(bpy)2(py)2]Cl2: opening an opportunity for advancing the use of photoactivatable metal complexes in medicine and biology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013